鉅大LARGE | 點擊量:1154次 | 2019年12月31日
適用于小功率電機驅(qū)動的MOSFET逆變模塊設(shè)計
摘要
本文介紹新型的MOSFET逆變模塊,用于驅(qū)動風(fēng)扇和水泵中的小型直流無刷電機。這種功率模塊集成了6個MOSFET和相應(yīng)的高壓柵極驅(qū)動電路(HVIC)。通過使用專門設(shè)計的MOSFET和HVIC,該模塊能提供最小的功耗和最佳的電磁兼容(EMC)特性。本文將探討這種逆變模塊在電機驅(qū)動應(yīng)用中所涉及的封裝設(shè)計、MOSFET和HVIC,并著重討論其中的功率損耗、電磁干擾和噪聲問題。
電氣設(shè)計
對于小型電機驅(qū)動系統(tǒng),MOSFET在功耗、成本和性能方面較其它功率開關(guān)管更具優(yōu)勢。MOSFET的正向特征電阻為歐姆級(見圖1(a));其導(dǎo)通損耗與漏極電流的平方成正比,當(dāng)漏極電流低于1A時,其導(dǎo)通損耗低于額定功率相同的IGBT的導(dǎo)通損耗,這是因為IGBT在通態(tài)時存在閾值電壓,該電壓隨逆變輸出功率的下降而顯著增加。大多數(shù)空調(diào)使用的風(fēng)扇電機功率在50W以下;在這個功率級別上,基于MOSFET的逆變器的效率高于IGBT。
至于其反向特性(參見圖1(a)),MOSFET中固有的體二極管可充當(dāng)IGBT逆變器中的快速恢復(fù)二極管(FRD);即可以通過電子擴散過程實現(xiàn)快速而平滑的恢復(fù)特性,同時節(jié)省了引線框內(nèi)芯片的占用空間。由于MOSFET比一般FRD尺寸大,其反向壓降小,而且在柵極為高時,該壓降甚至?xí)?,這是因為MOSFET溝道本身就允許雙向電流。MOSFET的另一個優(yōu)勢是其耐用強度。它比IGBT的耐用強度高;與額定功率相同的其它器件相比,具有更寬的安全運行區(qū)(SOA)。本文所介紹逆變模塊中的MOSFET在典型的運行條件(Vcc=15V,Vdc="300V",Tc="25"℃)下,都能承受80ms的短路電流(見圖2)。而且,在出現(xiàn)電涌時,基于MOSFET逆變器的抵御能力優(yōu)于額定電壓相同的IGBT方案,這已被開關(guān)器件的雪崩額定電壓值所證實。因此,在220V下可采用額定電壓為500V的MOSFET,而在相同條件下采用IGBT,其額定電壓則需要達(dá)到600V。但是,傳統(tǒng)的MOSFET開關(guān)速度極高。MOSFET通常用于快速開關(guān)轉(zhuǎn)換器,如AC/DC或DC/DC電源,這些應(yīng)用場合要求柵極電荷Qg盡可能少,以降低開關(guān)損耗。不過,在電機驅(qū)動應(yīng)用中,這種快速特性沒有用處,尤其是高的dV/dt值還會引起電磁干擾。穩(wěn)定性與最佳性能不易兼顧。
通常,增加?xùn)艠O阻抗會降低MOSFET的開關(guān)速度。在如圖3(a)所示的半橋電路中,如果高壓側(cè)MOSFET的柵極阻抗(在HVIC中實現(xiàn))大,將會存在一定的短路電流;這個電流是上面那個MOSFET導(dǎo)通時的密勒電容Cgd感應(yīng)產(chǎn)生的,不嚴(yán)重時一般不會察覺。但是,正如圖3(b)所示,這種異常行為會增加逆變開關(guān)的損耗(導(dǎo)通損耗),并最終減弱系統(tǒng)的額定功率和穩(wěn)定性。在這樣的瞬態(tài)過程中,要降低開關(guān)速度,同時又不失穩(wěn)定性,上方那個MOSFET的Vgs應(yīng)小于閾值電壓Vth。換句話說,最好通過調(diào)節(jié)HVIC的關(guān)斷阻抗來保證系統(tǒng)的穩(wěn)定性,防止因電壓變化而感應(yīng)短路電流。但這會增加MOSFET的關(guān)斷dV/dt值。
除了穩(wěn)定性外,在確定柵極電阻時,還應(yīng)考慮空載時間和延遲時間之類的運行要求。電壓源逆變器的空載時間會降低輸出電壓的質(zhì)量,進(jìn)而降低電機的轉(zhuǎn)速性能。而且,這個問題會隨開關(guān)頻率的增大而進(jìn)一步惡化。消費電子應(yīng)用中的開關(guān)頻率一般在16kHz以上,這是為了防止可聽見音頻帶(人耳可聽到的頻帶)噪聲;系統(tǒng)開發(fā)人員一般都希望將系統(tǒng)的空載時間設(shè)計為1ms。1ms的理論極限(控制器可設(shè)置的最小值)可由公式(1)計算。
Tdead=max(Toff,LS-Td(on),HS,Toff,HS-Td(on),LS)(1)
這里,Td(on)為導(dǎo)通時的傳送延遲(從輸入信號脈沖的50%起到電流達(dá)到穩(wěn)定所需的時間);Toff為關(guān)斷時的傳送延遲(從輸出信號脈沖的50%起到整流換向完畢所需的時間)。下標(biāo)HS和LS分別表示高壓側(cè)和低壓側(cè)MOSFET。要滿足空載時間要求,可延長Td(on),即增加導(dǎo)通柵極電阻。但這種方法不適用于通過檢測直流通道電流來測量三相電流的系統(tǒng),因為這種系統(tǒng)的一個關(guān)鍵要求是導(dǎo)通延遲要小。當(dāng)輸出脈沖寬度小于功率器件的導(dǎo)通延遲時,不能用電流檢測技術(shù)來測量逆變器的輸出電流。增大導(dǎo)通延遲會增加電流檢測的不確定性,尤其是在調(diào)制指數(shù)小的低速運行情況下。因此,增加導(dǎo)通延遲雖能縮短空載時間,但卻會減弱電機的低速性能。
上述問題不能通過調(diào)節(jié)某一時刻的柵極電阻來解決。為了獲得最佳的性能(最佳空載時間、最佳延遲時間),同時又保持穩(wěn)定性(防止dV/dt感應(yīng)出短路電流),必須針對電機定制MOSFET。除調(diào)節(jié)柵極電阻外,還需要優(yōu)選MOSFET的Qg和Vth。在本文介紹的逆變模塊中,MOSFET的Qg比值(即Qgd/Qgs)被設(shè)置為2.0左右,以防止在最壞的情況下出現(xiàn)短路電流。根據(jù)這個電荷值確定出適合的柵極電阻范圍。功率MOSFET的延遲時間是Vth的對數(shù)函數(shù)。因此,Vth的變化范圍對確定最壞情況的延遲時間和空載時間有很大作用。在滿足這些要求的同時,輸出電壓變化(dV/dt)應(yīng)當(dāng)小,以降低電磁干擾。圖1(a)和(b)所示的開關(guān)特性是滿足如下條件時測試的結(jié)果:dV/dt=2kV/ms,空載時間=1.0ms,導(dǎo)通延遲時間=2.5ms(延遲時間是在最壞的運行情況下,并考慮柵極電阻和其它器件參數(shù)的離差后,從輸入信號脈沖中心到建立電流穩(wěn)定所需的時間)。我們已通過適當(dāng)選擇柵極導(dǎo)通電阻和閾值電壓達(dá)到了這些條件。
除了這些可預(yù)先確定的特性外,用戶還可控制模塊的開關(guān)速度。象其它SPM系列一樣,本文介紹的這種模塊在高壓側(cè)MOSFET上提供開放源極輸入端,允許用戶加入自己的阻抗單元來控制高壓側(cè)MOSFET的開關(guān)速度,從而在開關(guān)損耗與電磁干擾之間作出最佳平衡。
下一篇:太陽能逆變器電池特性分析與描述